Tetrahedron Latters Vol.21, pp2721-2724 © Pergamon Press Ltd. 1930. Printed in Great Britain

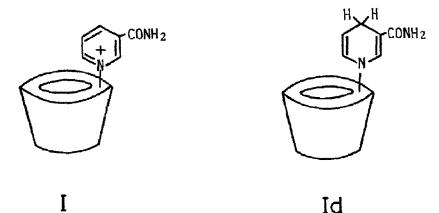
THE CYCLODEXTRIN-NICOTINAMIDE COMPOUND AS A DEHYDROGENASE MODEL SIMULATING APOENZYME-COENZYME-SUBSTRATE TERNARY COMPLEX SYSTEM

Masayoshi Kojima*, Fujio Toda

Department of Synthetic Chemistry, Faculty of Engineering, the University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113 Japan

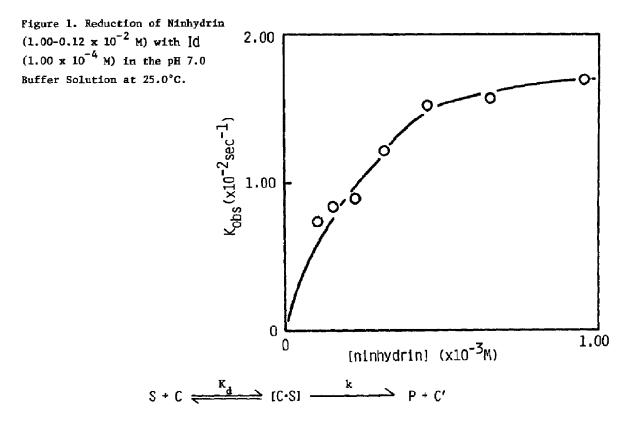
and Kenjiro Hattori

Department of Industrial Chemistry, Faculty of Engineering, Tokyo Institute of Polytechnics, Atsugi, Kanagawa 243-02 Japan


Abstract: The cyclodextrin-dihydronicotinamde had a dihydronicotinamde group at the open side of cyclodextrin cavity, and showed a large rate enhancement in the reduction of substrate upon complexation comparing with NADH.

In the lines of studies to simulate enzyme action using cyclodextrins¹⁾, the molecular design of the coenzyme NADH-dependent enzyme catalysis²⁻⁴⁾ may be set up with a dihydronicotin-amide(coenzyme) attached to a cyclodextrin(apoenzyme) and a complexed substrate in the aqueous system. This paper describes the first synthesis of β -cyclodextrin-dihydronicotinamide([d]) which has a nicotinamide molecy on a cyclodextrin molecule and can form a complex with a sub-strate and reduce it. [d] also reveals a large rate enhancement for the reduction of a substrate comparing with monomeric NADH. This is the first approach for the model reaction of compulsory ordered mechanisms⁵⁾ in which the pyridine nucleotide compulsorily binds first.

We have already reported the selective modification of the secondary hydroxyl groups of cyclodextrins by functional groups.^{6,7)} The key step of the preparation was the selective tosylation of one secondary hydroxyl group, which occured by the reaction of β -cyclodextrin with 5 times molar quantity of p-tolylsulfonyl chloride in pH 12.5 aqueous alkaline solution at room temperature for one hour.⁷⁾ Partial hydrolysis of β-cyclodextrin tosylate in an acidic solution gave glucose and 3-tosyl glucose which was determined by paper chromatography. Here, one of the secondary hydroxide anion at C-3 position on glucose ring of β -cyclodextrin can attack the sulfur atom of p-tolylsulfonyl chloride included in its cavity, giving C-3 monotosyl β-cyclodextrin. Then, the cyclodextrin tosylate was allowed to react with 10 time molar quantity of nicotinamide in DMF at 110°C for 2 days.⁸⁾ The product was precipitated into acetone, followed by gel chromatography with high porous polystylene gel. The product was applied to a column (DIAION HP-20; \$3 x 70 cm) and eluted with water, 5% aqueous methanol and then 10% aqueous methanol. The 10% aqueous methanol eluate was evaporated to dryness, giving β -cyclodextrin-nicotinamide (]) which had carbamoyl pyridinium moiety attached to β -cyclo-These chromatographic procedures were repeated until t.l.c. indicated this was pure $(R_r 0.05$ with the developing solvent; *n*-butanol-DMF-water 2:1:1). Yield was 10% based on the starting cyclodextrin tosylate.


Nmr spectrum of [in D_2O , referred to TMP (3-(trimethylsilyl)-tetradeuteriopropionic acid sodium salt), showed absorption at δ 4.86 assigned to C_1 H of glucose ring. Also it showed multiplet peaks at δ 9.5-8.0 ppm due to nicotinamide, and qualtet at δ 7.7-7.1 ppm due to *p*tolylsulfate anion which may form the ion-pair with quaternary pyridinium ion. Anal. Calc. for $C_{55}H_{82}N_2O_{38}S \cdot 3H_2O$: C, 46.11; H, 5.88; N, 1.96; S, 2.24. Found; C, 46.07; H, 5.67; N, 2.11 S, 2.53.

Cyclodextrin-dihydronicotinamide ([d]) was prepared by the reduction at C-4 position of nicotinamide molety of] according to ageneral procedure of Haynes and Todd.⁹⁾ After chromatography with HP-20, the fractions eluted with 33% aqueous methanol gave the purified Id. Yield was ca. 50%. The structure of [d] was confirmed by UV absorption λ_{max} 355 nm (ε_{max} 2100) due to the reduced form of pyridine ring. The schematical structures of these newly prepared cyclodextrin-nicotinamide compounds] and [d] was shown as below.

Half-wave potentials of [, NAD⁺ and ninhydrin (hydrogen acceptor) were determined by polarography as to be -1.05, -1.00^{10} and -0.95 volts respectively in pH 7.0 buffer solutions [0.2N-KH₂PO₄-0.2N-NaOH-0.1N-KC1] referred to saturated calomel electrode. Because half-wave potentials can be paralleled with redox potentials.¹¹ the reduction of ninhydrin with [d] seemed to be reasonably possible.

The redox reactions of [] or NADH with ninhydrin were carried out in aqueous media(pH 7.0) and rates of reduction were followed spectrometrically. The disappearence of dihydronicotinamide was followed at 350 nm by a usual method at 25.0°C. Id was so stable in pH 7.0 aqueous solution at room temperature that the self-decomposition of [d was negligible. By the measurements of nmr, [] showed no peaks at δ 9.5-8.0 ppm, but after the reaction was over multiplet peaks at δ 9.5-8.0 ppm due to nicotinamide could be observed, which indicated that Id was completely oxidized to I. In the condition of excess ninhydrin concentrations, pseudofirst order rate constants k were evaluated by Guggenheim plots.¹²⁾ Plotting k versus ninhydrin concentrations showed increasing curvature with increasing ninhydrin concentrations as in Figure 1. Such saturation behavior in the presence of I() is generally regarded as a manifestation of complex formation between Id and ninhydrin. The kinetics of this reduction fit equations analogous to those of enzyme kinetics. The rate constant k for fully complexed ninhydrin and the complex dissociation constant K_d were determined, assuming the following schem

where S is ninhydrin which can be included by Id (as expressed in C) and reduced to give product P with rate constant k, and C' is I. The well-known Eadie expression¹³⁾ for treatment of enzyme kinetic data is presented in the following equation.

$$k_{obs} = k - K_d k_{obs} / [S]$$

Therefore k can be obtained from the intercepts of Eadie plots and K_d from the slopes as were shown in Table 1. In the redox reaction of][] or NADH with ninhydrin in equimolar condition, second order rate constant k_{II} were evaluated from half-life method, which are also shown in Table 1.

Table 1. Reduction of Ninhydrin with [] and NADH

compound	k^{a} x $10^{-2} sec^{-1}$	$K_d^{(b)} \ge 10^{-5} M$	k _{II} ^{c)} sec ⁻¹
Id	2.0	2.1	12.6
NADH			0.31

a) First order rate constant determined by Eadie plots.

b) Dissociation constant determined by Eadie plots; Data from Figure 1.

c) Second order rate constant determined by half-life method at pH 7.0, 25.0°C, $[]d] = 1.0 \times 10^{-4}$ M, [NADH] = 1.0 x 10^{-4} M and [ninhydrin] = 1.0 x 10^{-4} M.

According to the k_{II} values, [d] indicated large rate enhancement up to 40 times comparing with monomeric coenzyme NADH. This result suggested the importance of proximity effect¹⁴⁾ caused by complex formation between two compounds. The value of K_d (2.1 x 10⁻⁵ M) also suggested relatively tight complex formation between Id and ninhydrin,

Based on the above investigations it can be concluded that the newly prepared compound (IC) has a dihydropyridine ring at the open side of β -cyclodextrin troidal and can reduce a substrate included in the cavity in the same mode of reactions as enzyme reactions. Thus, this artificial enzyme has a direct mechanistic evidence for the dehydrogenase catalysis in several points such as tight binding, rate enhancement and proximity effect which were caused by the ternary complex formation.

REFERENCES

 Cf. (a) M.L.Bender, M.Komiyama, "Cyclodextrin Chemistry" Springer-Verlag (1978); (b) M.L. Bender, M.Komiyama, "Bioorganic Chemistry" vol.1, chap.2, E.E.van Tamelen Ed., Academic Press Inc. (1977); (c) D.W.Griffiths, M.L.Bender, Adv. Cat.,23 209 (1973).

2. B.Vennesland, F.H.Westheimer, "The Mechanism of Enzyme Action" W.D.McElory, B.Glass Ed., Jhon Hopkins (1954).

3. L.J.Arnord, N.O.Kaplan, J.Biol.Chem., 249 652 (1974).

4. J.Everse, E.C.Zoll, L.Kaplan, N.O.Kaplan, Bioorg. Chem., <u>1</u> 207 (1971)

5. G.W.Schwert, "Pyridine Nucleotide-Dependent Dehydrogenases" p.133, H.Sund Ed., Springer-Verlag (1970).

(a) Y.Iwakura, K.Uno, F.Toda, S.Onozuka, K.Hattori, M.L.Bender, J.Amer.Chem.Soc.,<u>97</u> 4432 (1975);
(b) K.Hattori, S.Onozuka, F.Toda, 26th IUPAC Congress, Preprints <u>1</u> 44,45 (1977) Tokyo.

7. S.Onozuka, M.Kojima, F.Toda, K.Hattori, Bull.Chem.Soc.Jpn., submitted.

8. This was carried out according to the procedure of Karrer and coworkers in Helv.Chim.Acta., 19 811 (1936).

9. L.J.Haynes, A.R.Todd, J.Chem.Soc., 1950 303.

10. C.O.Schmakel, K.S.V.Santhanam, P.J.Elving, J.Amer.Chem.Soc., <u>97</u> 5083 (1975).

11. This relation was discussed in I.M.Kolthoff, J.J.Lingane, "Polarography" second Ed., vol.1, pp.246-249, Interscience Publishers. (1952)

12. E.A.Guggenheim, Phil.Mag., 2 538 (1926).

13.G.S.Eadie, J.Biol.Chem., 146 85 (1942).

14. T.C.Bruce, S.J.Benkovic, "Bioorganic Mechanisms" vol.1, p119, W.A.Benjamin Inc. (1966).

(Received in Japan 1 April 1980)